High Pressure Copolymerization of Styrene with Maleic Anhydride

Considering that the reactivity of a growing chain in copolymerization might be influenced by the nature of the penultimate unit, eight possible propagation steps are recognized,

$$\begin{split} & \longrightarrow -M_{S}M_{S}^{\bullet} + M_{S} \rightarrow \dots -M_{S}M_{S}M_{S}^{\bullet} \qquad k_{SSS} \\ & \longrightarrow -M_{S}M_{S}^{\bullet} + M_{M} \rightarrow \dots -M_{S}M_{S}M_{M}^{\bullet} \qquad k_{SSM} \\ & \longrightarrow -M_{M}M_{S}^{\bullet} + M_{S} \rightarrow \dots -M_{M}M_{S}M_{S}^{\bullet} \qquad k_{MSS} \\ & \longrightarrow -M_{M}M_{S}^{\bullet} + M_{M} \rightarrow \dots -M_{M}M_{S}M_{M}^{\bullet} \qquad k_{MSM} \\ & \longrightarrow -M_{M}M_{M}^{\bullet} + M_{S} \rightarrow \dots -M_{M}M_{M}M_{S}^{\bullet} \qquad k_{MMS} \\ & \longrightarrow -M_{M}M_{M}^{\bullet} + M_{S} \rightarrow \dots -M_{M}M_{M}M_{S}^{\bullet} \qquad k_{MMS} \\ & \longrightarrow -M_{S}M_{M}^{\bullet} + M_{S} \rightarrow \dots -M_{S}M_{M}M_{S}^{\bullet} \qquad k_{SMS} \\ & \longrightarrow -M_{S}M_{M}^{\bullet} + M_{S} \rightarrow \dots -M_{S}M_{M}M_{S}^{\bullet} \qquad k_{SMS} \\ & \longrightarrow -M_{S}M_{M}^{\bullet} + M_{M} \rightarrow \dots -M_{S}M_{M}M_{S}^{\bullet} \qquad k_{SMM} \\ & \frac{d[M_{S}]}{d[M_{M}]} = \frac{1 + [r_{1}'x(r_{1}x + 1)]/(r_{1}'x + 1)}{1 + r_{2}'/x[(r_{2} + x)/(r_{2}' + x)]} = n \\ & x = [M_{S}]/[M_{M}] \\ & r_{1} = k_{SSS}/k_{SSM}, \qquad r_{1}' = k_{MSS}/k_{MSM} \\ & r_{2} = k_{MMM}/k_{MMS}, \qquad r_{2}' = k_{SMM}/k_{SMS} \end{split}$$

where

Eq. (1) was simplified as follows because the reactivity of anhydride radical to maleic anhydride is zero, $k_{MMS} = k_{SMM} = 0$.

$$n - 1 = r'x(1 + rx)/(1 + r'x)$$
 (2)

Fig. 1 shows the copolymer composition calculated from Eq. (2) at various pressures and the solid curves based on the r_1 , r_2 values listed

G. ENOMOTO, Y. OGO, and T. IMOTO

in Table 1 were the best fit for the experimental data. The ratio r'_1/r_1 which means the degree of penultimate effect decreased from 2.8 to 1.7 on increasing the pressure from 1 to 4000 kg/cm².

Pressure (kg/cm ²)	r ₁	r'i	r_1'/r_1
1	0.023	0.065	2.8
2000	0.022	0.055	2.5
4000	0.023	0.042	1.7

Table 1. The monomer reactivity ratios calculated from penultimate model

The effect of pressure on the rate of chemical reactions can be related to the volume change from reactants to the transition state with VAN'T HOFF's equation.

$$\left(\frac{\partial \ln \mathbf{k}}{\partial \mathbf{P}}\right)_{\mathbf{T}} = -\frac{\Delta \mathbf{V}^*}{\mathbf{R}\mathbf{T}}$$
(3)

where ΔV^* is an activation volume.

Assuming that ΔV^* does not vary with the pressure, Eq. (3) lead to

$$\ln \frac{(\mathbf{k})_{\mathbf{P}}}{(\mathbf{k})_{\mathbf{l}}} = -\frac{\Delta V^*}{\mathbf{RT}} (\mathbf{P} - \mathbf{l}) \approx -\frac{\Delta V^*}{\mathbf{RT}}$$
(4)

where $(k)_P$ and $(k)_1$ are the rate constants at P kg/cm² and atmosphere, respectively.

By substituting $r_1 = k_{SSS}/k_{SSM}$ and $r'_1 = k_{MSS}/k_{MSM}$ into Eq. (4), the following equations are obtained.

$$\left(\frac{\partial \ln \mathbf{r}_{1}}{\partial \mathbf{P}}\right)_{\mathrm{T}} = \left[\frac{\partial \ln \left(\mathbf{k}_{\mathrm{SSS}}/\mathbf{k}_{\mathrm{SSM}}\right)}{\partial \mathbf{P}}\right]_{\mathrm{T}} = -\frac{\left(\Delta \mathbf{V}_{\mathrm{SSS}}^{*} - \Delta \mathbf{V}_{\mathrm{SSM}}^{*}\right)}{\mathrm{RT}}$$
(5)

$$\left(\frac{\partial \ln \mathbf{r}_{1}'}{\partial \mathbf{P}}\right)_{\mathbf{T}} = \left[\frac{\partial \ln \left(\mathbf{k}_{\mathrm{MSS}}/\mathbf{k}_{\mathrm{MSM}}\right)}{\partial \mathbf{P}}\right]_{\mathbf{T}} = -\frac{\left(\Delta \mathbf{V}_{\mathrm{MSS}}^{*} - \Delta \mathbf{V}_{\mathrm{MSM}}^{*}\right)}{\mathbf{RT}}$$
(6)

According to Eq. (5) and (6) we can expect an difference of the activation volume on the copolymerization reactions. As shown Fig. 2, a plot of log r_1 or r'_1 against pressure were linear, $\Delta V^*_{MSS} - \Delta V^*_{MSM}$ was calculated 2.6 cm³/mole. The constancy of the reactivity ratios with pressure leads to $\Delta V^*_{SSS} = \Delta V^*_{SSM}$.

Since the activation volume of the propagation reactions of styrene, ΔV_{SS}^* , has been known to be $-11.5 \text{ cm}^3/\text{mole}$ from the data of NICHOLSON and NORRISH²).

$$\Delta V_{SSS}^* = \Delta V_{MSS}^* = -11.5 \text{ cm}^3/\text{mole}$$

$$\Delta V_{MSV}^* = \Delta V_{MSS}^* = 2.6 = -14.1 \text{ cm}^3/\text{mole}$$